
Coveros Implements
Test Automation
at PECOS 2.0

C A S E S T U D Y

The Centers for Medicare & Medicaid Services
(CMS) sought to revamp the Medicare enrollment pro-
cess by developing a replacement Provider Enrollment,
Chain and Ownership System (PECOS). The goals of the
system were to reduce provider burden and improve
operational efficiency while strengthening program
integrity. PECOS 2.0 was a ground-up rebuild of the
application system and enrollment process, leveraging
modern technology to deliver simplified processing
workflows for users, greater interoperability among
programs, and increased transparency by offering an
enterprise platform for all provider enrollments across
Medicare, Medicaid, and emerging programs.

In 2017 Solutions By Design II (SBD) was awarded the
program and teamed with Coveros to implement the
solution. The project was implemented using an agile
and DevOps approach, with a half-dozen agile develop-
ment teams building, testing, and deploying the micro-
services that make up PECOS 2.0 on a continuous basis.
Agile testing with a heavy emphasis on automation was
necessary to ensure high-quality software releases.

While development teams put a strong emphasis on unit
testing to achieve high levels of code coverage, function-
al testing was largely neglected during the early phases

of the project. Like many new development projects,
siloed testing and development led to a large amount
of testing technical debt, as well as the ownership of
quality being left on the QA team late in the lifecy-
cle. Furthermore, the team never adopted a test-first
approach, so testing was always pushed off until later,
causing a ripple effect in delays. Once testing did occur,
initial testing was all manual and exploratory, and test
cases weren’t fully documented. Tests were hard to
reproduce in a manual or automated fashion, no re-
quirements for test traceability existed, and regression
and release risk were difficult to define. Testing also
couldn’t be done in sprint because there was no shared
understanding of the application between dev and QA.

C H A L L E N G E S
•	 Automated testing was initially undervalued, so some

QA members were hired without automation skills
and needed training and a structural framework

•	 Initial testing efforts suffered from a lack of emphasis
on automated testing and test architecture, with no
framework to organize, design, and implement tests
that could integrate properly with the development
code base and the CI/CD pipeline

•	 Developers viewed testing as a separate problem for
the QA silo, and the definition of done for stories did
not include automated testing, or even formal docu-
mented verification procedures for features

•	 Automated tests were solely owned and used by the
QA team, so upkeep was a problem, pipeline inte-
gration was often an afterthought, and other teams

C A S E ST U DY

Coveros Implements Test Automation at PECOS 2.0

C H A L L E N G E S
• �QA team members didn’t

possess necessary automation
skills

• �Test efforts lacked a structure
for automation

• �Testing was isolated to individ-
ual QA members

• �Testers documented and script-
ed tests in their own separate
repository

S O LU T I O N S
• �Automated testing was priori-

tized and teams got training

• �A front-end testing framework
was implemented that integrat-
ed with the CI/CD pipeline

• �Test cases were assembled into
containers for pipeline builds

• �Microservice functionalities
were compiled and published
to one release repository

didn’t know how to run tests (or even if they existed)
•	 Testers documented and scripted tests in their own

separate repository area, leading to tests drifting
out of sync with the actual code they were running
against, causing difficulty in finding and retrieving
the right tests

S O LU T I O N
Coveros engaged with the existing test engineers to
develop a plan of action for improving the testing cycle
and efforts made by the QA team.

The first order of business was to introduce a front-end
testing framework to support the application under de-
velopment. The Selenified test framework was chosen
due to its open source nature and ease of use for both
web and API testing. A few UI and API tests were writ-
ten as examples, after which the QA team was trained
on the tooling and implementation. The team also
started an effort to convert existing tests written using
Cucumber and Selenium to Selenified. This was an easy
way to introduce writing tests using Selenified, and it
could use the tests previously written by the QA team.
Working training sessions were held individually and as
a team multiple times a week to get testers up to speed.

The next step was to implement a structure and meth-
od for storing and updating tests. Due to the nature
of the application with its multiple microservices, the
application existed in multiple Git repositories. Each
repository contained not just the microservice code,

but also the automated tests associated with the UI or
API. This ensured that the tests stayed in sync with the
code as it evolved. As code was updated on branches,
the tests would get updated at the same time.
In order to facilitate simpler testing, both locally and
in the pipeline, the Selenified tests got assembled into
Docker “test containers” for each service during pipe-
line builds. The Dockerized test containers made it easy
to package and run tests that matched the version of
each microservice. On a successful build—meaning all
tests passed—the Docker container was pushed to the
artifact repository, Nexus, so that all users could down-
load and execute these tests with a single command.

The DevOps pipeline was set up so that the tests were
executed in the pipeline any time a GitHub pull request
was made. Regardless of whether the tests passed or
failed, a report was generated in Jenkins that outlined
each test, its status, and individual test steps, to make
debugging simple. If there were any test failures, the
testers would be notified so that they could make the
necessary changes. This rapid feedback also allowed
the testers to become aware of any major code chang-
es and modify the tests as needed. This drove further
communication between the testers and the develop-
ment teams.

In order to eliminate any test and framework page du-
plication, the team made heavy use of the Page Object
Model (POM) and DataProviders, following common
test automation design patterns. In order to speed up

“Adapting Selenified
framework into PECOS
2.0 helped immensely
in kick-starting the
team’s UI automation
efforts. It was easy to
use, and the test case
reports generated
were highly valuable.
Having the Coveros
test solution lead
available for answers
and to conduct working
sessions boosted the
team’s confidence in
adapting to this new
framework.”

—Sukanya Somasundaram,
QA team lead on PECOS 2.0

C A S E ST U DY

Coveros Implements Test Automation at PECOS 2.0

test execution, steps of each test that were not depen-
dent on the UI were done directly through the API. This
pattern allowed automated test cases to focus on what
mattered for validation, rather than getting hung up in
other areas.

Because there were heavy dependencies between
the microservices, tests often needed to reference
functionality from another service; for example, a
dashboard test needs authentication functionality. To
further reduce duplication, the functionalities from
each service’s Gradle build were compiled, stored,
and shared in Nexus. This easily allowed all services to
reuse the code as a common library. Each pull request
had the common step libraries pushed to a snapshot
repository in Nexus so that initial common steps could
be shared.

Once tests passed in the pipeline and were merged
into development, these common libraries were pub-
lished to a release repository in Nexus. A semantic
versioning model was followed with these libraries in
order to keep breaking changes from impacting exist-
ing dependent tests.

T E C H N O LO GY S O LU T I O N S
•	 Selenified testing framework for front-end and API tests
•	 JUnit and Jest for unit tests
•	 Spring Boot Java REST services
•	 React JS web UI

•	 Docker containers running in OpenShift Kubernetes
Distribution (OKD)

•	 Gradle and Node Package Manager (NPM) build system
•	 Jenkins, Nexus, SonarQube, and Docker CI/CD pipeline

B U S I N E S S VA LU E
Coveros was able to help PECOS achieve a number of
business benefits, including increased ability to im-
plement system improvements while reducing risk,
escaped defects, and test cycle time.

With help from Coveros, PECOS was able to develop
over a hundred functional and API tests and get them
running within their continuous integration pipeline.
This allowed rapid feedback about application health
and feature quality in an automated fashion, all before
code was ever merged. Thanks to the design of the
tests and framework, these tests could be executed
quickly, allowing dozens of tests to run in under a min-
ute. This rapid feedback gave developers more confi-
dence to move forward with their development.

Thanks to the containerization of the test cases, test-
ing was no longer isolated to individual QAs, and the
quality of the application could be verified early on in
the development process—even allowing devs to test
before pushing their code. This additional confidence
in the software integrity sped up the development pro-
cess and pushed testing left.

coveros.com

info@coveros.com

929.341.0139

twitter.com/coveros

linkedin.com/company
/coveros

CO N N E C T W I T H
COV E R O S

C A S E ST U DY

Coveros Implements Test Automation at PECOS 2.0“Coveros was able
to come in, suggest
appropriate tooling,
and train our staff
to write functional
testing in a short
period of time. This
common tooling
allowed us to increase
our test automation
coverage and
improve confidence
in the quality of the
software.”

—Jay Bercher, SBD deputy
program manager for
PECOS 2.0

http://coveros.com
mailto:info@coveros.com
http://twitter.com/coveros
http://linkedin.com/company/coveros
http://linkedin.com/company/coveros
http://linkedin.com/company/coveros
mailto:info@coveros.com
http://twitter.com/coveros
http://coveros.com

