
TECHNICALLY SPEAKING

Anyone who has attempted to architect, design, develop, test,

deliver, and deploy business value with software knows that there

are no silver bullets. Humans are fallible, and as hard as we try,

we make unintentional mistakes due to the fragility of our meth-

ods, tools, techniques, and skill sets. Mistakes are amplified by the

stresses of our working environment.

Whether the approach taken is traditional or agile, these fra-

gilities and stresses always exist. This

is especially true with projects that

rely on continuous integration or a

DevOps framework. However, our op-

portunity to better mitigate these risks

significantly improves as we adopt

more modern software engineering

practices. Key principles such as rap-

id design and refactoring, delivering

small increments of customer value

more frequently, engaging customers

throughout the process, failing fast and

learning, collaboration across develop-

ment and operations, simplicity, and

automation are accelerating our abili-

ty to significantly ratchet up our engi-

neering excellence.

The software development industry

now has the opportunity to realize the goal we’ve always had to

build in quality rather than attempt to test quality in after the fact.

Over the years, I have learned a number of techniques and ap-

proaches to achieve the goal of designing for quality at every step

of the software engineering value stream. This works for both agile

and DevOps project environments.

Invest in a Plan
Upfront planning approaches and whole-team engagement and

accountability help clarify the value increments to be delivered.

Collective ownership engages the entire team in quality de-

livery. The customer, product owner, analyst, architect, developer,

tester, and operations roles form a cohesive team, laser-focused on

delivering customer value.

Design planning helps teams collectively envision and design

features and functionality from the beginning of the project.

Prototyping offers the team techniques to assist with the

definition of functional and nonfunctional requirements. This in-

cludes wireframes, mockups, personas, and in-sprint experiments.

Peer reviews enlist the expertise

of others and help ensure that the

multiple perspectives are represented

throughout a project.

This includes pairing between the

developer and tester, business analysts

and product owner, and operations

team members.

Grooming is vital to keep the team

aligned on the most important value

to be delivered. This can be accom-

plished through backlog grooming,

prioritization, and story refinement

and definition.

Test-first development assists the

team in defining the required customer

value prior to implementing code.

Techniques such as specification by

example help specify the requirements and “test first” approaches

help to ensure code is right the first time.

Implement in Small Increments
Implementation approaches quickly verify small increments of

change and new functionality.

Guidelines and checklists for architecture, design, coding,

testing, and operations, as well as other team norms, promote pre-

ventive practices and help avoid mistakes and rework.

Static and dynamic analysis tools help the team understand

code structure, complexity, coverage, and security vulnerabilities,

and detect anomalies that need to be corrected quickly.

Using Agile and DevOps to
Achieve Quality by Design
INSTEAD OF TESTING FOR QUALITY ON A FINISHED PRODUCT, HERE ARE THREE
APPROACHES TO BUILD IN QUALITY AT EVERY STEP OF THE SOFTWARE LIFECYCLE.
by Mike Sowers | msowers@techwell.com

Shift from a
traditional

mental model
toward a

continuous,
iterative series
of automated

verification steps.

B E T T E R S O F T W A R E T e c h W e l l . c o m 9

mailto:msowers@techwell.com
http://techwell.com

TECHNICALLY SPEAKING

Unit testing and refactoring reduce the risk that

code changes cause additional problems, promote early

detection of defects at the structural level, and allow the

code to be refined with refactoring.

Mocking helps the team have higher confidence in

progressive integrations, abstract out dependencies,

and verify interactions between dependent classes ear-

ly. This is accomplished by faking and stubbing at the

interface level.

Continuous integration for each code commit and

performing integration testing at multiple levels effec-

tively exposes interface defects at the unit and each

succeeding level as code is further integrated into the

application or system.

Automation of the infrastructure that moves the

code and that assists with the testing of the code elim-

inates errors so that code deployment and delivery

yields consistent and repeatable results. Applying the

concept of “infrastructure as code” and then defining

and automating the value stream (the pipeline) codifies

the creation of environments and reduces the variability between

development, testing, staging, and preproduction.

Defining “done” clearly specifies the criteria necessary to

move an increment of value forward in the pipeline, eliminating

disagreements and setting expectations up front for what work

completion means.

Think Continuous
After planning and incremental implementation, continuous

processing techniques can lead to rapid product delivery.

Fast feedback informs the team immediately when something

is not performing or is drifting off course by using in-process dash-

boards or postprocess production and user experience monitoring.

Iterative risk assessments based on fast feedback enable the

team to adjust their verification focus and strategies with immediacy.

Functional and nonfunctional testing increase defect yields

earlier in the development lifecycle, as does performing story tests,

exploratory tests, and user acceptance tests. Using heuristics helps

the team design better tests.

Regression testing for each level validates changes and en-

sures that a recent change did not impact another area of the ap-

plication or system.

Combining microservices with container deployment, thus

decomposing the application into smaller services, results in im-

proved modularity, makes the application easier to test, reduces re-

source consumption, and speeds deployment. Together, these prac-

tices reduce fragility and aid continuous delivery and deployment.

Continuous delivery and deployment provide quick feed-

back, employ pipeline automation, and keep the code production

line running smoothly and efficiently with a defined set of quality

assurance steps and gates that are automated.

Operational tests that validate security, user provisioning,

backup, and failover are shifted left and incorporated into earlier

testing stages. Operational requirements should be specified and

agreed upon by the collective DevOps team early in the project.

Feature and application delivery using feature toggles helps

reduce risks when a change is deployed, as the change verification

rollout and rollback can be better controlled. Change automation

adds an additional level of production control and mitigates defect

exposure and risks.

Monitoring of both preproduction and production environ-

ments provides the team with a deeper understanding about the

quality and usage of the customer value being developed and de-

livered. In addition to standard environment monitoring, the team

also can use application monitoring and user experience monitor-

ing and analysis to understand usage patterns more quickly.

All of This Results in Higher Quality
I’ve always thought of software development, delivery, and

deployment as a series of imperfect translations. Defects are of-

ten introduced during the translation process from one handoff

to the next.

The above approaches enable the team to –– from a traditional

mental model toward a continuous, iterative series of automated

verification steps.

This investment drives software assurance left to earlier in the

lifecycle, which helps us achieve the quality-by-design goal and re-

duces translation errors.

B E T T E R S O F T W A R E T e c h W e l l . c o m 10

http://techwell.com

