
CrossTalk—May/June 2016 13

INTEGRATION AND INTEROPERABILITY

DevOps
DevOps is a software development culture that stresses col-

laboration and integration between software developers, opera-
tions personnel, and everyone involved in the design, creation,
development, and delivery of software. It is based on the same
principles that were identified in the Agile Manifesto [1], but while
many agile methodologies focus on development only, DevOps
extends the culture to the entire software development lifecycle.

Central to DevOps is continuous delivery: delivering software
often, possibly multiple times each day, using a delivery pipeline
through testing stages that build confidence that the software
is a viable candidate for deployment. Continuous delivery (CD)
is heavily dependent on automation: automated builds, testing,
and deployments. In fact, the reliance on automated deployment
is so key that DevOps and CD are often erroneously considered
synonymous with automated deployment.

Having a successful delivery pipeline means more than just
adding automation. To be effective, tests of all types must be in-
corporated throughout the process in order to ensure problems
aren’t slipping through. Those tests include quality checks, func-
tional testing, security tests, performance assessments, and any
other type of testing you require before releasing your software.

The delivery pipeline also opens up opportunities to add more
testing. Static analysis tools can review code style and test for
simple security errors. Automated deployments allow automated
functional testing, security tests of the software system as de-
ployed, and performance testing on production-like servers. Conti-
nuity of operations (COOP) plans can be tested every time that the
infrastructure changes, not just annually in front of the auditors.

With this additional testing, CD can produce software that
has fewer defects, can be deployed more reliably, and can be
delivered far more confidently than traditional methodologies.
Escaped defect rates drop, teams experience lower stress, and
delivery is driven by business need. The benefits aren’t just slight
improvements. In fact, a 2015 report on DevOps from Puppet

DevOps Advantages
for Testing
Increasing Quality through
Continuous Delivery
Gene Gotimer, Coveros
Thomas Stiehm, Coveros

Abstract. DevOps and continuous delivery can improve software quality and
reduce risk by offering opportunities for testing and some non-obvious benefits
to the software development cycle. By taking advantage of cloud computing and
automated deployment, throughput can be improved while increasing the amount
of testing and ensuring high quality. This article points out some of these oppor-
tunities and offers suggestions for making the most of them.

Labs found that teams using DevOps experience “60 times
fewer failures and recover from failures 168 times faster than
their lower-performing peers. They also deploy 30 times more
frequently with 200 times shorter lead times [2].”

The choices of tools and frameworks for all of this automation
has grown dramatically in recent years, with options available for
almost any operating system, any programming language, open
source or commercial, hosted or as-a-service. Active communi-
ties surround many of these tools, making it easy to find help to
start using them and to resolve issues.

Continuous Integration
Building a CD process starts with building a Continuous Integra-

tion (CI) process. In CI developers frequently integrate other de-
veloper’s code changes, often multiple times a day. The integrated
code is committed to source control then automatically built and
unit tested. Developers get into the rhythm of a rapid “edit-compile-
test” feedback loop. Integration errors are discovered quickly,
usually within minutes or hours of the integration being performed,
while the changes are fresh on the developer’s minds.

A CI engine, such as Jenkins [3], is often used to schedule
and fire off automated builds, tests, and other tasks every time
code is committed. The automated build for each commit makes
it virtually impossible for compilation errors and source code
integration errors to escape unnoticed. Following the build with
unit tests means the developers can have confidence the code
works the way they intended, and it reduces the chance that
changes had unintended side effects.
Important: Continuous integration is crucial in providing
a rapid feedback loop to catch integration issues and
unintended side effects.

The choice of CI engine is usually driven by the ecosystem you
are working in. Common choices include Jenkins for Linux environ-
ments and Team Foundation Server [4] for Windows environments.

Code Coverage
CI can also tie-in code coverage tools that measure the

amount of code that is executed when the unit tests are run.
Code coverage can be a good guide as to how well the code

is unit tested, which in turn tells you how easy it should be to
reorganize the code and to change the inner workings without
changing the external behavior, a process known as refactoring
[5]. Refactoring is an important part of many agile development
methodologies, such as extreme programming (XP) [6] and test-
driven development (TDD) [7].

In TDD, a test is written to define the desired behavior of a unit
of code, which could be a method or a class. The test will naturally
fail, since the code that implements the behavior is not yet written.
Next, the code is implemented until the test passes. Then, the
code is refactored by changing it in small, deliberate steps, rerun-
ning the tests after each change to make sure that the external
behavior is unchanged. Another test is written to further define
the behavior, and the “test-implement-refactor” cycle repeats.

By definition, code behavior does not change during refactoring.
If inputs or outputs must change, that is not refactoring. In those
cases, the tests will necessarily change as well. They must be main-
tained along with, and in the same way as, other source code.

14 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Without sufficient code coverage you cannot be sure that
behavior is unchanged. A change in the untested code may
have an unintended effect elsewhere. Having enough unit
testing and code coverage means you are free to do fearless
refactoring: you can change the design and implementation
of the software without worrying something will break inad-
vertently. As the software evolves and you learn more about
how the software should have been written you can go back
and make changes rather than living with early decisions. In
turn, you can move faster at the beginning by “doing the sim-
plest thing that could possibly work [8]” rather than agonizing
over every decision to (impossibly) make sure it will address
all future needs, known and unknown.
Important: Unit testing and code coverage is about
more than just testing. It also enables fearless refactor-
ing and the ability to revisit design and implementation
decisions as you learn more.

Code coverage tools are usually programming language-
dependent. JaCoCo [9] is an excellent open-source choice for
Java, Coverage.py [10] for Python, and NCover [11] is a popular
commercial tool for .NET. Every popular programming language
today is likely to have several code coverage tool options.

Mutation Testing
Code coverage can’t tell the whole story. It only counts how

many lines (or methods, or classes, etc.) are executed when the
unit tests run, not whether that code is tested well, or at all.

Mutation testing [12] is a process by which existing code is
modified in specific ways (e.g., reversing a conditional test from
equals to not equals, or flipping a true value to false) and then
the unit tests are run again. If the changed code, or mutation,
does not cause a test to fail, then it survives. That means the
unit tests did not properly test the condition. Even though code
coverage may have indicated a method was completely covered,
it might not have been completely tested.

Mutation testing generally runs many times slower than unit
tests. But if it can be done automatically then the cost of run-
ning the mutation tests is only time it takes to review the results.
Successful mutation testing leads to higher confidence in unit
tests, which leads to even more fearless refactoring.
Suggestion: Use mutation testing tools to determine how
effective your unit tests are at detecting code problems.

Tools for mutation testing are available for various program-
ming languages and unit test frameworks. Two mature tools
are PIT Mutation Testing [13] for Java and Ninja Turtles [14] for
.NET. Humbug [15] is a popular choice for PHP and many op-
tions exist for Python [16].

Static Analysis
Static analysis tools are easy to use via the CI engine. These

tools handle many of the common tasks of code review, looking at
coding style issues such as variable and method-naming conven-
tions. They can also identify duplicate code blocks, possible coding
issues (e.g., declared but unused variables), and confusing coding

practices (e.g., too many nested if-then-else statements). Having
these mundane items reviewed automatically can make manual
code reviews much more useful since they can focus on design is-
sues and implementation choices. Since the automated reviews are
objective, the coding style can be agreed upon and simply enforced
by software.

Important: Static analysis can allow manual code reviews to
concentrate on important design and implementation issues,
rather than enforcing stylistic coding standards.

Static analysis tools can also identify some serious problems.
Race conditions, where parallel code execution can lead to
deadlocks or unintended behavior, can be difficult to identify via
testing or manual code review, but they can often be detected
via static analysis. SQL and other injection vulnerabilities can also
be identified, as can resource leaks (e.g., file handle opened but
not closed) and memory corruption (e.g., use after free, dangling
pointers).

Since static analysis tools can be fast and can easily run
automatically as part of the edit-compile-test cycle, they can be
used as a first line of defense against coding errors that can
lead to serious security and quality issues.
Important: Static analysis tools can provide early
detection of some serious code issues as part of the
rapid CI feedback cycle.

Every popular programming language has a selection of static
analysis tools -- many of them open source. But even easier
than choosing one or more and integrating them with your build
process or CI engine is installing the excellent open-source
tool known as SonarQube [17]. It integrates various analyses
for multiple programming languages and displays the combined
results in an easy-to-use quality dashboard that tracks trends,
identifies problem areas, and can even fail the build when re-
sults are beyond project-defined thresholds.

Delivery Pipeline
The delivery pipeline describes the process of taking a code

change from a developer and getting it delivered to the cus-
tomer or deployed into production. CD generally evolves by ex-
tending the CI process and adding automated deployment and
testing. The delivery pipeline is optimized to remove as many
manual delays and steps as practical. The decision to deploy or
deliver software becomes a business decision rather than being
driven by technical constraints.

The delivery pipeline is often described as a series of triggers:
actions such as code being checked into the source control sys-
tem, that initiate one or more rounds of tests, known as quality
gates. If the quality gate is passed, that triggers more processes,
which lead to more quality gates. If a quality gate is not passed,
the build is not a viable candidate for production, and no further
testing is done. The problems that were discovered are fixed
and the delivery pipeline begins again.

The delivery pipeline should be arranged so the earliest
tests are the quickest and easiest to run and give the fastest
feedback. Subsequent quality gates lead to higher confidence
that the code is a viable candidate and they indicate more

CrossTalk—May/June 2016 15

INTEGRATION AND INTEROPERABILITY

expensive tests (in regards to time, effort, or cost) are justi-
fied. Manual tests migrate towards the end of the pipeline,
leaving computers to do as much work as possible before
humans have to get involved. Computers are significantly
cheaper than people and humans often work slower than
computers. They get sidetracked, go to meetings, and don’t
work around the clock.

The CI process is often the first stage of the delivery pipeline,
being the fastest feedback cycle. Often the CI process is block-
ing: a developer will wait until the quality gate is passed before
continuing. Quality gates later in the pipeline are non-blocking:
work continues while the quality checks are underway.

While it can be tempting to arrange the delivery pipeline in
phases (e.g., unit testing, then functional tests, then accep-
tance tests, then load and performance tests, then security
tests), this leaves the process susceptible to allowing seri-
ous problems to progress far down the pipeline, leading to
wasted time testing a non-viable candidate for release and
extending the time between making a change and identifying
any problems. Instead, quality gates should be arranged so
each one does enough testing to give confidence the next
set of tests is worth doing.

For example, after some functional tests, a quick perfor-
mance test might be valuable to make sure a change hasn’t
rendered the software significantly slower. Next, a short
security check could be done to make sure some easily de-
tectable security issue hasn’t been introduced. Then a full set
of regression tests could be run. Later, you could run more
security tests along with load and performance testing. Each
quality gate has just enough testing to give us confidence the
next set of tests is worth doing.
Suggestion: Do just enough of each type of testing early
in the pipeline to determine if further testing is justified.

Negative Testing
The first tests written are almost always sunny-day sce-

narios: does the software do what it was intended to do? We
should also make sure there are functions that the soft-
ware doesn’t do: rainy-day scenarios. For example, one user
shouldn’t be able to look at another user’s private data. Bad
input data should result in an error message. A consumer
should not be able to buy an item if they do not pay. A web-
user should not be able to access protected content without
logging in. Whenever you identify sunny-day tests, you should
also identify related rainy-day tests.

Identifying these conditions while features are being developed
will lead to more tests, which will help build more confidence that
new features aren’t inadvertently introducing security holes. The
tests will form a body of regression tests that document how the
software is intended to work and not to work. As the code gets
more complex, you will be able to fearlessly refactor knowing that
you are not introducing unintended side effects.
Important: Sunny-day testing is important, but rainy-
day testing can be just as important for regression
and security. You need to test both to be confident
the code is working correctly.

Automated deployment
Some types of testing aren’t valuable until the code is com-

piled, deployed, and run in a production-like environment. Secu-
rity scans might depend on the web server configuration. Load
and performance tests might need production-sized systems. If
deployment is time consuming, error prone, or even just frustrat-
ing, it won’t be done frequently. That means you won’t have as
many opportunities to test deployed code.

While an easy, quick, reliable manual install makes it easier
to deploy more often, having an automated process can make
deployments almost free, especially when deployments can be
triggered automatically by passing quality gates. That lets the
delivery pipeline progress without human interaction. When
there are fewer barriers to deploying, the team will realize there
are more chances to exercise the deployment process. When
combined with the flexibility of cloud computing resources,
deployments will become a regular course of action rather than
a step taken only late in the development cycle.

Important: Automated deployments will be used more often
than simple manual deployments. They will be tested more often
and the delivery pipeline will find more uses for them.

Configuration management tools that perform automated
deployments are a class of tool that has garnered a lot of
attention in recent years, and many excellent tools, frame-
works, and platforms are readily available, both commer-
cially and open source. Puppet [18], Chef [19], and Ansible
[20] lead the pack with open-source products that can be
coupled with commercial enterprise management systems.
Active ecosystems have evolved around each of them with
plenty of community support.

Using automated deployments more often gives you more
chances to validate that your deployment process works. You
can’t afford to hope that it works because it runs; you have
to verify that it successfully deployed and configured your
system or systems using an automated verification process. It
has to be quick, so you can afford to run it on each deploy-
ment. It should test the deployment, not the application func-
tionality, so focus on the interfaces between systems (e.g.,
IP addresses and firewalls), configuration properties (e.g.,
database connection settings), and basic signs of life (e.g., is
the application responding). Repeatedly deploying to different
environments and then verifying the deployment works gives
you higher confidence it will work when deploying to produc-
tion, which is the deployment that really counts.
Suggestion: Each deployment should be followed
with an automated deployment verification suite.
Make the deployment verification reusable, so the
same checks and tests can be used after each deploy-
ment, no matter which environment.

Deployment verification checks can usually be automated us-
ing the same tool you use for functional and regression testing.
If that tool is too heavyweight or can’t be easily integrated into
the pipeline, consider a lightweight functional testing framework
like Selenium [21] and/or one of the xUnit test frameworks [22],
such as JUnit [23] for Java or nUnit [24] for .NET.

16 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Exploratory Testing
Manual exploratory testing is not made obsolete by adopt-

ing automated testing. Manual testing becomes more impor-
tant since automated tests will cover the easy things, leaving
the more obscure problems undiscovered. Testers will need
increasing amounts of creativity and insight to detect these
issues, traits almost impossible to build into automation. The
very term exploratory testing highlights the undefined nature
of the testing. Automated tests will never adapt to find issues
they aren’t testing for. This is known as the paradox of auto-
mation. “The more efficient the automated system, the more
crucial the human contribution [25].”

The delivery pipeline does not have to be an unstopping
conveyor belt of releases. Human testers cannot cope with a
constant stream of new releases. They cannot deal with the
software changing mid-test or even mid-test cycle. Even when
they find one problem, there is value in continuing their tests to
see if the same problem exists in related functions, or look-
ing for unrelated issues in other parts of the code. There is a
balance to make sure time isn’t invested testing a non-viable
candidate from production and restarting a test suite to fix every
little problem individually.

Waiting for human testers to be ready to start a new test
cycle slows down the rest of the pipeline. In order to incor-
porate their testing and not constantly interrupt their test
cycles as new versions of the software are made available,
consider on-demand deployments, where the pipeline does
not deploy to the exploratory testing environment until the
testers choose it to be deployed. Or perhaps the software is
deployed automatically to a new dynamic environment each
time it is packaged, and the testers move on to the most
recent (or most important, or most promising) environment.
In this way, there is always an environment available for the
testers to use without pulling the rug out from under them
during their test cycle, thereby buffering the bottleneck [26].

While you want to reduce the time testers spend testing a
build that is not viable, you also don’t want to start so late as
to be a constraint for other activities. Consider running the
exploratory testing in parallel with other automated and non-
automated tasks, minimizing the wait by placing it at the end of
the cycle rather than the start. Think about time boxing (defining
and enforcing a fixed duration) the test cycle.
Suggestion: Deployments for manual testing must
be coordinated so testers can have a stable environ-
ment. Consider on-demand deployments, and make
sure the pipeline is only waiting at the end of manual
testing, not the beginning.

Parallel Testing
Just as with the exploratory testing, other long-running tests

should be run in parallel to make progress while waiting for lon-
ger tests to complete. Taking advantage of automated deploy-
ments, multiple environments can be built so some tests can be
done at the same time using different resources. This can mean
doing multiple types of tests at one time, or breaking one type
of tests into smaller chunks that can be handled in parallel.

Often four one-day-long tasks are preferable to one four-day-
long task because the shorter tasks give additional opportunities for
feedback. The fourth day might not need to be needed if there is a
show-stopper identified on day three. In parallel, those tests might
be run in two parallel tracks, taking a total of two days only. Or per-
haps a two-day stress test can be undertaken in parallel with a two-
to-three day security scan, to reduce the effect of the bottleneck.
Suggestion: Long-running testing should be done in
parallel as much as practical, so that you don’t have
to wait days or weeks for individual test phases to be
completed in sequence.

Infrastructure
Development teams need infrastructure to get their work

done. Source code repositories, CI engines, test servers,
certificate authorities, firewalls, and issue tracking systems
are all examples of tools that might be required, but they are
often not deliverables for the project.

Infrastructure doesn’t stay static. Systems need to be moved
or replicated. They get resized. Applications, tools, and operating
systems get upgraded. Hardware goes bad. And other projects
need to use the same or similar infrastructure. Setting up your
infrastructure is never a one-time occurrence. Even though this
infrastructure is internal-facing, it quickly becomes mission criti-
cal to the development team.

Treat it like you do production code. Automate the deployment
so that redeploying is as easy as pushing out a new version of the
software you are writing. Use the same automated deployment
tools since you already have experience and tools to support them.
Suggestion: Use your familiarity with the automated
deployment tools to automate your infrastructure de-
ployments as well. Treat automated deployment code
and infrastructure as mission critical.

Case Study – Forge.mil
DISA’s Forge.mil supports collaborative development for the

DoD. It is built using commercial off-the-shelf software coupled
with open-source tools and custom integration code, written in a
variety of programming languages (e.g., Java, PHP, Python, Perl,
Puppet). The team used agile techniques from the beginning
in order to maximize throughput for the small team doing the
integration and development work. The project also served as
an exemplar project to demonstrate and document how agile
techniques could be used within DoD projects.

An early focus on continuous integration led the team to
identify several bottlenecks in the delivery process. Functional
testing was manual, slow, and hard to do comprehensively. De-
velopment, test, and integration environments were all config-
ured differently from each other and different than production.
Deployments were manual, long, complicated, and unreliable.
Security patches were often applied directly into production with
limited testing, almost always in response to information assur-
ance vulnerability alerts (IAVAs). A team of about two dozen de-
velopers, testers, integrators, managers, and others were deliver-
ing software to production once every six months. A software
release was a big, scary event, carefully planned and scheduled

CrossTalk—May/June 2016 17

INTEGRATION AND INTEROPERABILITY

weeks in advance by the entire team. Problems were identified
in the days after each release (often by end users), carefully tri-
aged, with hot fixes deployed or workarounds documented.

The team focused on removing some of these bottlenecks,
concentrating on improved functional and regression testing.
After discovering the book Continuous Delivery by Jez Humble
and Dave Farley [27], they began using Puppet scripts for con-
figuration management which greatly improved the reliability of
production deployments. Consistent, production-like deployments
in other environments could be performed on-demand in minutes,
many times a week. Proactive security testing and vulnerability
patching became convenient and did not disrupt other develop-
ment and testing activities. The bottlenecks the team had identi-
fied earlier were eliminated or greatly reduced, one-by-one.

Over time, the team size decreased to less than a dozen
people. Software was confidently deployed to production
every two weeks with neither drama nor concern. Full regres-
sion tests, performance tests, and security tests were regular
occurrences multiple times a week. Security patches were
incorporated into the normal release cycle, often being fully
tested and deployed to production before the IAVAs were
even issued. Reports of issues after releases (aka escaped
defects) disappeared almost completely. Software releases
were driven by business needs and the project management
office, not by technical limitations and risks identified by the
developers, testers, and integrators.

More details are available in Continuous Delivery in a Legacy
Shop - One Step at a Time [28], originally presented at DevOps
Conference East 2015 in Orlando, Florida.

1. Humble, Jez, and David Farley. Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Upper Saddle River,
NJ: Addison-Wesley, 2011. Print.

2. Kim, Gene, Kevin Behr, and George Spafford. The Phoenix Project: A Novel about IT,
DevOps, and Helping Your Business Win. Portland, Oregon: IT Revolution, 2013. Print.

3. Duvall, Paul M., Steve Matyas, and Andrew Glover. Continuous Integration:
Improving Software Quality and Reducing Risk. Upper Saddle River,
NJ: Addison-Wesley, 2007. Print.

4. Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing Code.
Reading, MA: Addison-Wesley, 1999. Print.

FURTHER READING

Conclusion
The journey towards a continuous delivery practice relies

heavily on quality tests to show if the software is (or is not) a
viable candidate for production. But along with the increased
reliance on testing, there are many opportunities for performing
additional tests and additional types of tests to help build con-
fidence in the software. By taking advantage of the automated
tests and automated deployments, the quality of the software
can be evaluated and verified more often and more com-
pletely. By arranging the least expensive tests (in terms of time,
resources, and/or effort) first, a rapid feedback loop creates
openings to fix issues sooner and focus more expensive testing
efforts on software that you have more confidence in. By having
a better understanding of the software quality, the business can
make more informed decisions about releasing the software,
which is ultimately one of the primary goals of DevOps.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,

CrossTalk can get the word out. We are specifically looking for articles on soft-
ware-related topics to supplement upcoming theme issues. Below is the submittal

schedule for the areas of emphasis we are looking for:

Supply Chain Risks in Critical Infrastructure
Sep/Oct 2016 Issue

Submission Deadline: Apr 10, 2016

Beyond the Agile Manifesto
Nov/Dec 2016 Issue

Submission Deadline: Jun 10, 2016

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

18 CrossTalk—May/June 2016

INTEGRATION AND INTEROPERABILITY

Gene Gotimer is a proven senior software architect with many years of experience in web-based enter-
prise application design, most recently using Java. He is skilled in agile software development as well as
legacy development methodologies, with extensive experience establishing and using development ecosys-
tems including: continuous integration, continuous delivery, DevOps, secure software development, source
code control, build management, release management, issue tracking, project planning & tracking, and a
variety of software assurance tools and supporting processes.

ABOUT THE AUTHORS

1. Beck, Kent, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
and Dave Thomas. “Principles behind the Agile Manifesto.” Agile Manifesto. N.p.,
2001. Web. 10 Dec. 2015. <http://agilemanifesto.org/principles.html/>.

2. Puppet Labs 2015 State of DevOps Report. Rep. PwC US, 22 July 2015. Web. 10
Dec. 2015. <https://puppetlabs.com/2015-devops-report>

3. “Welcome to Jenkins CI!” Jenkins CI. CloudBees, n.d. Web. 17 Dec. 2015.
<https://jenkins-ci.org/>.

4. “Team Foundation Server.” Team Foundation Server. Microsoft, n.d. Web. 19 Jan.
2016. <https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx>.

5. Fowler, Martin, and Kent Beck. Refactoring: Improving the Design of Existing Code.
1st ed. Reading, MA: Addison-Wesley, 1999. Print.

6. “Extreme Programming.” Wikipedia. Wikimedia Foundation, n.d. Web. 21 Jan. 2016.
<https://en.wikipedia.org/wiki/Extreme_programming>.

7. “Test-driven Development.” Wikipedia. Wikimedia Foundation, n.d. Web. 21 Jan.
2016. <https://en.wikipedia.org/wiki/Test-driven_development>.

8. “Do The Simplest Thing That Could Possibly Work.” Do The Simplest Thing That
Could Possibly Work. Cunningham & Cunningham, Inc., n.d. Web. 12 Dec. 2015.
<http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork>

9. “JaCoCo Java Code Coverage Library.” EclEmma. N.p., n.d. Web. 19 Jan. 2016.
<http://eclemma.org/jacoco/>.

10. “Coverage.” Python Package Index. N.p., n.d. Web. 19 Jan. 2016. <https://pypi.
python.org/pypi/coverage>.

11. “NCover | .NET Code Coverage for .NET Developers.” NCover. Gnoso, n.d. Web. 19
Jan. 2016. <http://www.ncover.com/>.

12. “Mutation testing.” Wikipedia. Wikimedia Foundation, n.d. Web. 12 Dec. 2015.
<https://en.wikipedia.org/wiki/Mutation_testing>

13. “Real World Mutation Testing.” PIT Mutation Testing. N.p., n.d. Web. 19 Jan. 2016.
<http://pitest.org/>.

14. “NinjaTurtles - Mutation Testing for .NET (C#, VB.NET).” NinjaTurtles. N.p., n.d. Web.
10 June 2015. <http://www.mutation-testing.net/>.

15. “Humbug.” GitHub. N.p., n.d. Web. 19 Jan. 2016. <https://github.com/padraic/humbug>.
16. “Index of Packages Matching ‘mutationtesting’.” Python Package Index. N.p., n.d.

Web. 19 Jan. 2016. <https://pypi.python.org/pypi?%3Aaction=search&term=mutati
on%2Btesting&submit=search>.

17. “Put Your Technical Debt under Control.” SonarQube™. SonarSource, n.d. Web. 20
Jan. 2016. <http://www.sonarqube.org/>.

18. “Open Source Puppet.” Puppet Labs. Puppet Labs, n.d. Web. 20 Jan. 2016. <https://
puppetlabs.com/puppet/puppet-open-source>.

19. “Chef.” Chef. Chef Software, Inc., n.d. Web. 20 Jan. 2016.
<https:/ /www.chef.io/>.

20. “Ansible Is Simple IT Automation.” Ansible. Ansible, Inc., n.d. Web. 20 Jan. 2016.
<http://www.ansible.com/>.

21. “Selenium - Web Browser Automation.” SeleniumHQ. N.p., n.d. Web. 20 Jan. 2016.
<http://www.seleniumhq.org/>.

22. “XUnit.” Wikipedia. Wikimedia Foundation, n.d. Web. 20 Jan. 2016. <https://
en.wikipedia.org/wiki/XUnit>.

23. “JUnit.” JUnit. N.p., n.d. Web. 20 Jan. 2016. <http://junit.org/>.
24. “NUnit.” NUnit. N.p., n.d. Web. 20 Jan. 2016. <http://www.nunit.org/>.
25. “Automation.” Wikipedia. Wikimedia Foundation, n.d. Web. 17 Dec. 2015. <https://

en.wikipedia.org/wiki/Automation#Paradox_of_Automation>
26. Goldratt, Eliyahu M. “Theory of Constraints.” Wikipedia. Wikimedia Foundation, n.d.

Web. 17 Dec. 2015. <https://en.wikipedia.org/wiki/Theory_of_constraints>
27. Humble, Jez, and David Farley. Continuous Delivery: Reliable Software

Releases through Build, Test, and Deployment Automation. Upper Saddle River,
NJ: Addison-Wesley, 2011. Print.

28. Gotimer, Gene. “Continuous Delivery in a Legacy Shop - One Step at a Time.” Slide-
Share. Coveros, Inc., 12 Nov. 2015. Web. 20 Jan. 2016. <http://www.slideshare.net/
ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time>.

REFERENCES

Tom Stiehm has been developing applications and managing software development teams for twenty
years. As CTO of Coveros, he is responsible for the oversight of all technical projects and integrating new
technologies and application security practices into software development projects. Most recently, Thomas
has been focusing on how to incorporate DevOps best practices into distributed agile development proj-
ects using cloud-based solutions and how to achieve a balance between team productivity and cost while
mitigating project risks. Previously, as a managing architect at Digital Focus, Thomas was involved in agile
development and found that agile is the only development methodology that makes the business reality of
constant change central to the development process.

http://agilemanifesto.org/principles.html/
https://puppetlabs.com/2015-devops-report
https://jenkins-ci.org/
https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Test-driven_development
http://c2.com/cgi/wiki?DoTheSimplestThingThatCouldPossiblyWork
http://eclemma.org/jacoco/
https://pypi.python.org/pypi/coverage
https://pypi.python.org/pypi/coverage
http://www.ncover.com/
https://en.wikipedia.org/wiki/Mutation_testing
http://pitest.org/
http://www.mutation-testing.net/
https://github.com/padraic/humbug
https://pypi.python.org/pypi?%3Aaction=search&term=mutation%2Btesting&submit=search
https://pypi.python.org/pypi?%3Aaction=search&term=mutation%2Btesting&submit=search
http://www.sonarqube.org/
https://puppetlabs.com/puppet/puppet-open-source
https://puppetlabs.com/puppet/puppet-open-source
http://www.chef.io/
http://www.ansible.com/
http://www.seleniumhq.org/
https://en.wikipedia.org/wiki/XUnit
https://en.wikipedia.org/wiki/XUnit
http://junit.org/
http://www.nunit.org/
https://en.wikipedia.org/wiki/Automation#Paradox_of_Automation
https://en.wikipedia.org/wiki/Automation#Paradox_of_Automation
https://en.wikipedia.org/wiki/Theory_of_constraints
http://www.slideshare.net/ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time
http://www.slideshare.net/ggotimer/continuous-delivery-in-a-legacy-shop-one-step-at-a-time

