
Perspectives

2	 IT Pro March/April 2010	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 1520-9202/10/$26.00 © 2010 IEEE

©
 W

es
t1

 |
D

re
am

st
im

e.
co

m

Integrating
Application Security
into Software
Development

B
uilding secure applica­
tions is the next chal­
lenge in application
security. Unfortunately,

application security initiatives are
usually the domain of security
organizations that don’t under­
stand software development or
that can’t influence the software
engineering practices of their soft­
ware development groups. Due to
this chasm, it’s difficult to transi­
tion application security initiatives
from identifying vulnerabilities
after software has been produced
to proactively mitigating vulner­
abilities during the entire software
development process.

Key Approaches
and their Pitfalls
Many approaches attempt to cross
this chasm. The following three
key approaches have pitfalls that
should be understood and miti­
gated to make them successful.

Approach #1: Integrate
Security into the Software
Process
In organizations that follow a de­
fined software development meth­
odology, security groups often
attempt to incorporate security

“touchpoints” into the software
process and enforce their use
as part of a security policy.1
Touchpoints added to the soft­
ware process are typically either
new software assurance activities
(such as Web application security
testing) or suggestions for build­
ing more secure software (such
as defensive programming guide­
lines). Several pitfalls exist for in­
tegrating security into a software
process.

Lack of application security
knowledge. Most software engi­
neers today know that software
applications have security vulner­
abilities that they need to eradi­
cate. Unfortunately, they often
lack the knowledge and training
to effectively build security into
their software. Attempting to en­
force a secure software develop­
ment standard when the software
development team hasn’t been
trained won’t work. For an appli­
cation security initiative to suc­
ceed, you need to incorporate the
appropriate training.

Too much change too fast.
For most organizations, rolling out
a secure software development

process is too much change
occurring too fast. It’s best to de­
velop an incremental rollout plan
that incorporates those security
touchpoints that balance the need
to be effective with ease of imple­
mentation. Code analysis and se­
curity testing are often effective
first steps, as the barrier to entry
is small and good automated tools
are available. Such tools include
Fortify 360 (www.fortify.com),
AppScan (www.ibm.com), Ounce
6 (www.ouncelabs.com), HP Web­
Inspect (www.hp.com), and Cov­
erity 5 (www.coverity.com).

Time and schedule pressures.
Expecting existing software
projects to address security is­
sues prior to their next software
release is typically unrealistic.
Existing budgets and schedules
were defined before security was
made a consideration, and most
development teams won’t have the
bandwidth or time to incorporate
security into their development
process. If an existing project’s
next release is deemed the most
appropriate place to begin adopt­
ing application security practic­
es, consider augmenting project
teams with software savvy security

Jeffery Payne
Coveros

itpro-12-02-pers.indd 2 06/02/10 5:08 PM

	 computer.org/ITPro � 3

engineers who can perform the
appropriate activities alongside
software development.

Approach #2: Training
Software Teams
There’s no doubt that a successful
application security program must
include appropriate education and
training. This includes training
not only software developers and
testers but also business analysts,
project managers, and business
sponsors—anyone involved in
project and product planning.
The best training incorporates
hands-on activities, because most
people learn best by doing. When
appropriate, you should augment
classroom training with mentor­
ing during software projects. Note
the following pitfalls when train­
ing software teams on application
security.

“Not my problem” mentality.
While many software engineers
will agree that software design
and coding activities often intro­
duce vulnerabilities, they don’t
believe they themselves make
such mistakes. Training is often
wasted on individuals who believe
that what they’re hearing doesn’t
apply to them. It’s best to incorpo­
rate into each training course spe­
cific examples of vulnerabilities
from the organization’s own code.
Instead of using canned examples
and case studies, try repurposing
the results of application security
assessments to make the train­
ing more applicable. It’s difficult
to argue that application security
isn’t a problem when actual as­
sessment results show otherwise.

Hiring the wrong trainers.
Nothing turns software engi­
neers off faster than listening to
someone talk about software de­
velopment who isn’t as technical
as they are. Many organizations
make the mistake of trying to use

security personnel or professional
trainers to teach application secu­
rity to software engineers. This
often results in half the class leav­
ing after the first break. It’s more
important that application secu­
rity trainers have strong software
skills than that they be profes­
sional trainers or security gurus.
Regardless, trainers must be able
to deliver training in an engaging
manner and know their material.

Approach #3: Deploying
Security Tools
Tools are great for speeding up
processes or providing knowl­
edge or content that enhances a
person’s capabilities. They’re also
great at performing monotonous
tasks repeatedly, saving your staff
time and energy better spent
elsewhere.

Security teams and manage­
ment often procure application
security tools (such as secure
code analysis or Web application
security testing tools) and expect
software engineers to integrate
and use such tools as part of their
daily activities. Besides time and
schedule constraints with intro­
ducing new technologies into
existing projects, there are other
pitfalls when procuring security
tools.

A fool with a tool is still a fool.
The value from a software secu­
rity tool comes from its use within
a defined process that’s under­
stood and followed. Make sure
when wielding tools that users
have been appropriately trained
and are following a process that
will result in business value. Too
often tools are thrust upon soft­
ware engineers without adequate
training. Remember, automating
a poor process just gives you poor
results faster.

Choosing the wrong tool for
the job. Security organizations

sometimes make the mistake of
evaluating and selecting tools
that don’t work in existing de­
velopment or production envi­
ronments. Sometimes nuances
in your software (the program­
ming language, code libraries,
and deployed environment) or IT
infrastructure (firewalls, secu­
rity policies, and data encryption)
will rule out some tools. Before
you commit to purchasing and
deploying a tool, make sure you
first evaluate it in your develop­
ment environment, on your code
base, and within your operational
environments.

Our Approach
To address these challenges, we at
Coveros have developed a simple
approach for introducing applica­
tion security into ongoing soft­
ware development projects.

Instead of asking software de­
velopment organizations to mod­
ify their processes, wield tools
they’re unfamiliar with, or attend
training they don’t yet concur is
necessary, our approach adds ap­
plication security analysis into the
software development process as
a side effect of existing develop­
ment best practices. We’ve found
that by doing so, organizations
are more likely to become aware
of application security issues and
begin addressing them as part of
their existing software process.
Once this occurs, it’s much easier
to move the organization toward
a secure software process, insti­
tute appropriate training, and de­
ploy security tools for use going
forward.

Our approach leverages a soft­
ware development best practice
called Continuous Integration as the
entry point for application security
into software development.

Continuous Integration
CI is the software development
practice of frequently integrating

itpro-12-02-pers.indd 3 06/02/10 5:08 PM

4	 IT Pro March/April 2010

Perspectives

software during the development
process.2 It’s an outgrowth of the
nightly build concept, which soft­
ware development teams have
been doing for decades to assure
that new or modified code is au­
tomatically compiled and tested
on a nightly basis. CI extends the
idea of night builds to let develop­
ment teams automatically compile
and test their application at other
critical times during software de­
velopment. Automated CI is often
performed during

•	 Code check-ins—code checked
into a source code control sys­
tem can be automatically inte­
grated and unit tested to assure
its quality. CI done during code
check-in typically doesn’t test
the application’s entire feature
set but quickly confirms that
code enhancements compile
and pass a set of unit tests.

•	 Nightly builds—each night, soft­
ware is automatically compiled
and a full battery of regression
tests are run to ensure the en­
tire code base integrates and op­
erates properly. Nightly builds
also often automatically execute
code analysis to ensure quality
and compliance.

•	 Weekly builds—for tests that take
too long to execute on a nightly
basis, weekly builds are often
established to compile and test
software more fully.

To manage an automated CI
process, CI servers have emerged.
CI servers let development teams
define when CI activities are per­
formed and the amount of test­
ing and code analysis that will
be done. You can configure CI
servers to not only automatically
compile and test software applica­
tions but also to populate project
and quality dashboards with CI
results and also notify the ap­
propriate individuals when the CI
process fails.

Integrating Application
Security into CI
Because many software organi­
zations already use CI to auto­
matically perform code analysis
and testing as part of their soft­
ware process, CI is a natural
integration point for introduc­
ing application security analysis
into software development. You
can easily integrate secure code
analysis and application secu­
rity testing into existing code
analysis and regression testing
frameworks to make application
security vulnerabilities visible
during development.

You can integrate secure code
analysis tools into your CI process
easily by modifying your build
scripts to perform secure code
analysis during software compi­
lation. All of the commercial and
open source code analysis tools
have instructions on how to do
this with little effort. Since secure
code analysis can take a signifi­
cant amount of time to run, I rec­
ommend performing this analysis
only on nightly and weekly builds.
If you use a secure code analysis
product that lets you control the
fidelity of the analysis, you might
be able to perform quick and
simple scans during code check-
ins as well, resulting in more
frequent feedback on software
vulnerabilities.

The best approach for integrat­
ing security testing tools into CI
depends on how the security test­
ing tool you select interacts with
the application it’s testing. Web
application security testing tools
often proactively crawl through
an application looking for vul­
nerabilities, while other products
analyze security while functional
tests are executing. You can set
up Web application security tools
to spawn a process and crawl
through an application during
any testing phase. Tools that work
alongside functional testing tools

are often configured as a proxy
that sits between an automated
testing tool and the application
being tested, looking for vulner­
abilities as existing tests run.

Results from secure code analy­
sis and security testing can be
displayed within any standard
project or quality management
dashboard alongside the results of
your traditional analysis. By inte­
grating security results into tradi­
tional code quality and functional
testing reports, application secu­
rity becomes just another aspect of
software quality. In addition, this
integration makes it difficult for
the software development organi­
zation reviewing and responding
to defects identified during CI to
ignore application security issues,
since they appear as just another
defect to correct before release.

SecureCI
To ease the process of incorporat­
ing application security analysis
into CI and its associated software
development process, Coveros
developed SecureCI—an open
source CI package that includes
secure code analysis and applica­
tion security testing. We integrat­
ed into one downloadable package
security tools along with best-of-
breed open source tools for source
code control, control of the CI
process, build management, auto­
mated testing, code analysis, and
project dash-boarding. Besides
integrating secure code analysis
and application security testing
into SecureCI, we also enhanced
a quality management dashboard
to display the results of security
analysis when run as part of CI.

Figure 1 shows the quality
dashboard that’s populated when
using SecureCI. The dashboard
generates standard measures
of code quality and compliance
along with application security
testing results (see the “ratproxy
issues” box) while performing CI

itpro-12-02-pers.indd 4 06/02/10 5:08 PM

	 computer.org/ITPro � 5

activities on an application. You
can view results for any individ­
ual build, or you can graph them
over time to review quality and se­
curity trends during the develop­
ment process.

Open source tools that we
integrated into SecureCI include

•	 Subversion—for source code
control,

•	 Hudson—a continuous inte­
gration server,

•	 Sonar—a quality management
dashboard,

•	 Trac—for tracking defects,
•	 Maven and Ant—for build

management,
•	 Ratproxy—for application secu­

rity testing,

•	 Junit and Selenium—for unit
and functional testing,

•	 PMD and Findbugs—for static
code analysis (for both quality
and security), and

•	 Cobertura—for code coverage.

Note that SecureCI currently sup­
ports only Java environments. A
version for .NET is in the plan­
ning stage. (You can download
SecureCI at www.coveros.com.)

E stablishing application
security initiatives with­
in software development

organizations is a critical chal­
lenge that must be addressed to
build secure software applications.

While process improvement,
training, and security tools all
play a part in any application
security initiative, organizations
often need a simpler starting
point. By leveraging existing CI
practices, you can seamlessly in­
tegrate secure code analysis and
security testing into the software
development process, thereby
providing a vehicle for making
development teams aware of the
application security vulnerabili­
ties they introduce. We have
found that this awareness of­
ten opens the door for better
integrating secure development
processes, tools, and training
into software development or­
ganizations.�

Figure 1. The Sonar Quality Dashboard for SecureCI. It displays integrated software vulnerability information.

itpro-12-02-pers.indd 5 06/02/10 5:08 PM

6	 IT Pro March/April 2010

Perspectives

References
	 1.	 G. McGraw, Software Security: Build-

ing Security In, Addison-Wesley Pro­
fessional, 2006.

	 2. 	 P. Duvall, S. Matyas, and A. Glov­
er, Continuous Integration: Improving
Software Quality and Reducing Risk,
Addison-Wesley Professional, 2007.

Jeffery Payne is CEO of Cove-
ros, a software firm that specializes
in secure software development. His
research interests include code analy-
sis, continuous integration, auto-
mated testing, agile development
methods, and secure software devel-
opment. Payne received an MS in

computer science from The College of
William and Mary. Contact him at
jeff.payne@coveros.com.

	 Selected CS articles and

	 columns are available for free at

http://ComputingNow.computer.org.

itpro-12-02-pers.indd 6 06/02/10 5:08 PM

