
24 CROSSTALK The Journal of Defense Software Engineering March/April 2010

Application development and security
practices are often at odds. Appli-

cation development is concerned with
creating software quickly with the most
features possible in the minimum amount
of time. Application security is con-
cerned with finding and removing securi-
ty vulnerabilities and releasing software
when critical security risks have been mit-
igated.

Many project stakeholders see appli-
cation security practices as an increase in
scope that adversely impacts the software
delivery schedule. In order to build
secure applications, it is important to
align application development and securi-
ty practices. Our analysis has found that
one of the best ways to do that is to inte-
grate secure code analysis and security
testing into CI. CI is a software develop-
ment practice where members of a team
integrate their work frequently, verifying
each integration by an automated
build/test process to detect integration
errors as quickly as possible [1]. Using CI,
the time and effort to build security into
the development process can be mini-
mized, making teams more likely to
include security practices in their soft-
ware development process and thereby
reducing the risk of a successful attack.

Immediate Notification
CI ensures that ongoing changes to the
source code do not break the intent or
design of the software. If a change does
break the software, that break is identi-
fied immediately and can be fixed with a
minimal cost and impact to the project’s
schedule.

CI started with the notion that each CI
cycle should make a clean build from an up-
to-date checkout from the source code
repository, and that a set of unit tests
should be run against the clean build as a
regression against the changes in the code
base. If the build and unit tests pass, then
the recent checked-in changes did not
break the software. If the build or unit
tests fail, then the changes broke the soft-
ware, and the CI server immediately noti-
fies the team that the software is broken.

Secure Development
CI is now the foundation for serving many
crucial software development process
tasks. Originally focused on compiling and
unit testing, CI practices have grown and
evolved over time. They now include
expanded practices, such as functional test-
ing and code analysis to evaluate the health
of a project. By integrating security testing
and secure code analysis, CI can be further
leveraged to include secure development
practices while minimizing the amount of
extra effort required to get the benefits of
secure development. Since it is tied to CI,
security testing and secure code review
begins when a project begins and runs con-
tinuously throughout project development.
With CI, security vulnerabilities testing
becomes part of the regression test bed,
executed automatically with each successive
build on the CI platform.

Changing Testing Economics
Technology advances have changed the
economics of testing, allowing more
aggressive approaches to testing than his-
torically possible. Using CI for build, test,
and analysis automation has increased the
depth and breadth of tests while also mak-
ing them faster and less expensive. By mak-
ing it cheap and easy to perform tests,
teams are encouraged to test more and test
sooner in the development cycle, reducing
the cost of fixing bugs. It has also made it
easier for managers and non-technical
stakeholders to understand project
progress and health.

For many projects, testing has gone
from a process that slowed deployment
down to one that provides true quality
assurance, in turn helping stakeholders
have more confidence in their projects. By
reducing the cost of many quality control
aspects of application development, teams
have been able to use those controls more
often and more effectively and have accel-
erated development while improving quali-
ty. This same change can be applied to
security practices integrated into CI. The
reduced cost of gathering security vulnera-
bility data will encourage teams to collect
the data more often and sooner in their

development cycle, reducing the cost to fix
issues such as cross-site scripting and SQL
injection.

Building Security Testing
Into CI
In order to integrate static code analysis
and security testing into CI, a few key
pieces of software are needed. Organiza-
tions should select a specific application for
each of the software categories (as shown
in Table 1), bearing in mind that some
products might fit into more than one cat-
egory. For example, Microsoft’s Team
Foundation Server (TFS) [2], fits into the
CI Server, Source Code Repository, and
Issue Tracking categories.

Choosing the Right Tools
It is possible to build a completely open
source CI process that includes static code
analysis and security testing. SecureCI is
one example of a CI product that is made
of all open source tools and can be down-
loaded and used free of charge [3]. There
are also many good commercial products
that, in some cases, provide more value
than their open source alternatives, such as
the Web crawling capability of AppScan
and WebInspect.

There are many tools to choose from,
ranging from unsupported to company-
supported open source software to com-
mercial software that is developed and
maintained completely by the company
that created it. In other words, an organiza-
tion can purchase support contracts to
commercial software—products that are
then developed and maintained completely
by the company that created them. There
are even some commercial software prod-
ucts that are free to use but come with
some restrictions, such as a limited number
of users. There is no correct or incorrect
tool as long as the acquired software works
together and can meet organizational
objectives.

Tool Integration
In general, the CI server will be the inte-
gration hub and orchestrator for a CI
process. CI servers come with integration

Building Security In Using Continuous Integration

Building security into software is harder than it should be. This article explores a way to align application security practices
with other software development best practices in order to make building security in easier to manage and more cost effective.
In particular, this article looks at combining continuous integration (CI) with security testing and secure static code analysis.

Thomas Stiehm and Gene Gotimer
Coveros

Building Security In Using Continuous Integration

March/April 2010 www.stsc.hill.af.mil 25

application programming interfaces (APIs)
for many of the tools an organization puts
in its toolset so that working with those
tools will be easy. If there isn’t an API for
one of the selected tools, CI servers can be
extended using scripting languages and
compiled code plug-ins. This flexibility
means that an organization can add any
tools that can be scripted or programmati-
cally controlled into their CI process, mak-
ing it possible to add security practices to
an existing CI process without having to
reinvent that process. For example, with
Hudson, in order to use PMD [4] or
FindBugs [5] for static code analysis, all
that is needed is creation of a build job that
uses an Ant [6] build to run the tool. You
then point the tool’s Hudson [7] plug-in to
the XML reports created during the Ant
build. The plug-in picks up the reports and
parses them for display using HTML and
generated graphics.

The CI server market is full of both
open source and commercial products.
Many of the open source CI servers have
commercial support contracts available.
Because of the mature CI server market,
there is no advantage in using either open
source or commercial products. The excep-
tion to this statement is when an organiza-
tion is considering development ecosystem
suites like Microsoft’s TFS and Visual
Studio suite.

Integrating security testing tools
requires a little more work. The application
under test needs to be deployed and run-
ning because security testing tools work by
interacting with the application, analyzing
the requests and responses from the point
of view of a Web browser. This means that
the CI server will have to deploy to an
application server, start it, and then kick off
the security testing tool. While it seems like
a lot of work, there are a number of good
examples on the Internet to help get start-
ed. The commercial security testing tools
can be configured to just launch and crawl
an application.

Creating Multiple
Complementary Builds to
Support Specific Needs
One of the first things organizations will
notice about using static code analysis and
automated security testing tools is that
build times—the time it takes to go
through a CI process—will increase signif-
icantly. Because of this increase, it is com-
mon for projects to use multiple CI jobs.
The different jobs are set to run on differ-
ent intervals and for different reasons. For
instance, most teams have a quick job that
runs within 10 minutes of a check-in and

produces a result within 10 minutes. This
quick job consists of a clean build and only
executes unit tests. This quick build tells the
developers that the new code works and
that all of the unit tests pass (i.e., the code
hasn’t introduced defects into previously
working code). Many teams will also use
longer running tests (a couple of hours),
compiling the project and running the unit
tests, while also executing other kinds of
tests (e.g., database tests and automated
functional tests). These tests take longer to
complete and have a longer feedback cycle.
By executing multiple jobs, an organization
can provide the team with feedback as
quickly as possible for a given type of feed-
back. Finally, many projects have jobs run-
ning from once a day to once a week that
perform static analysis or security testing.
This allows the processes to run at their
own pace without slowing down other test
processes.

The selection of a source code reposi-
tory is generally based on what already
exists in an organization’s environment.
From the overall goal of building security
into applications, the choice of source
repository makes little difference—it just
needs to work with the CI server.

Utilizing Both Commercial
and Open Source Tools
There is a healthy marketplace for issue
tracking applications having both open
source and commercial products.

Commercial issue tracking software has
an advantage over open source in terms of

the reporting and integration options.
Commercial applications tend to have a
better and more customizable reporting
system and tend to integrate more with
(usually commercial) software that might
be used in an overall development process.
That said, many projects and organizations
don’t need or use the extra capability of
commercial issue tracking software. For
small project teams or small companies,
open source issue tracking software works
just fine. For large enterprises with multiple
related development projects, a commercial
issue tracking application may offer needed
features that can justify the cost of acquir-
ing the software.

Open source unit testing tools are usu-
ally frameworks that provide a core unit
testing capability. These tools require a
developer to write and maintain unit tests.
If the developer follows the conventions of
the framework, running unit tests is very
simple and easy and many CI servers can
read and report on the results. The com-
mercial products in the space build on top
of the open source tools by adding the
capability to generate unit tests. The com-
mercial tools will scan the source code and
determine how to exercise the code paths
(in the source code) in order to get 100 per-
cent test coverage and possibly add nega-
tive unit tests.

We have worked on projects that have
used both developer-written unit tests and
tool-generated unit tests. When dealing
with security features, it is important to
write comprehensive unit tests that exercise
both the positive and negative paths

Software
Category

Open Source
ToolsDescription

Commercial
Tools

CI Server Server software that monitors the
source code repository and runs
the build when changes to the
repository are detected.

Hudson,
CruiseControl

TeamCity,
Bamboo,
TFS

Source Code
Repository

Software that keeps source code,
maintaining versions of the source files
and file groups (i.e., labels and tags).

Concurrent
Versions
Systems,
Subversion

Polytron
Version Control
System,
Clearview,
TFS

Issue Tracking Software that is used to manage software
issues and report their status.

Trac and
Sonar,
Bugzilla

Quality
Center,
TFS

Unit Testing Tools or frameworks used by developers
to test at a source code level.

JUnit,
NUnit

JTest

Functional Testing Tools, frameworks, or applications
used to test the functionality of software.

Selenium,
Watir

Quick Test
Professional,
SilkTest

Security Testing Tools, frameworks, or applications used
to test the security aspects of software
(i.e., penetration testing tools).

RatProxy,
WebScarab

AppScan,
WebInspect

Static Code
Analysis

Tools, frameworks, or applications used
to inspect either source code or compiled
files for known issues.

FindBugs,
PMD,
CheckStyle

Fortify
Source Code
Analyzer

Table 1: Tools for Different Software Categories

Systems Assurance: Preparation and Promise

26 CROSSTALK The Journal of Defense Software Engineering March/April 2010

through the code. Many security defects
come from security features that don’t have
a proper fail-safemethod for when there are
program or data processing errors.
Negative testing—or the testing for failure
paths in the source code—addresses the
correctness of failure states and can show
that a specific security feature can fail-
safely when something unexpected hap-
pens. If there is a large legacy code base
that doesn’t have unit tests, using a tool to
generate unit tests is a good way to add
tests quickly. Keep in mind, however, that
the project team still needs to review all of
those tests, change some, remove others,
and write new tests covering situations
that the tools couldn’t.

Security Testing Tools
Security testing is an excellent way to dis-
cover many of the security vulnerabilities
in an application. These tools are run
against an application, usually in a testing
environment, in its production configura-
tion. One goal of this testing is to deter-
mine if the application has defects, mak-
ing it vulnerable to outside attack while in
production; another is to see if the appli-
cation will fail safely when attacked.
Failing safe has different meanings to dif-
ferent applications, with the basic guide-
line that an application should not give
users unauthorized information or allow
them to take unauthorized actions.

In order to automate many open
source security-testing tools, they will
need to be used in conjunction with func-
tional test tools. For example Ratproxy [8],
a popular open source security-testing
tool, can’t (unlike popular commercial
security testing tools) crawl a Web applica-
tion. This means that people using
Ratproxy need to use another tool to crawl
the Web application while Ratproxy is
running. Another alternative is to have the
testers use Ratproxy while they are con-
ducting manual functional tests.

Another area where commercial secu-
rity testing tools have an advantage is in
reporting. Commercial security testing
tools, like AppScan [9], have a customiz-
able reporting capability that gives users
numerous ways to report their findings (in
order to conform to organizational stan-

dards or highlight different aspects of the
findings for different audiences). The
reporting capability also does a good job
of explaining the findings—that is, how
they can be exploited and remediated. In
contrast, Ratproxy has only one report
format that provides little detailed infor-
mation about an issue beyond its name
and where it was found. An analyst using
Ratproxy has to figure out what the issue
means and how to remediate it. Finding
out this information isn’t hard, but it can
be time-consuming.

Static Code Analysis Tools
Static code analysis tools examine the code
base for many problems including security
and code style issues, potential code
defects, and race conditions. These tools
are more akin to automated code review
than to unit and integration tests. The dif-
ference between commercial and static
code analysis tools mirror the differences
found in security testing tools: Commercial
tools have better reporting capabilities and
provide more information on the nature of
the findings and suggested remediation.
Another area where some commercial
tools have added value is in the depth of
analysis. Fortify Software’s Source Code
Analyzer [10] creates an entire model of
the application under analysis, examining
the data and control flow of the software
to determine if there is a larger-context
problem. Most open source static code
analysis tools only look for problems in a
local context (i.e., the immediate line of
code, code block, or file).

Static code analysis can either be per-
formed on the source code of an applica-
tion or on the compiled binaries. For exam-
ple, FindBugs runs against compiled Java
class files. It can find bad practices, null
pointer dereferences, static use of non-
thread safe code, and security issues. PMD
runs against Java source files. It can find
dead code, performance issues, style issues,
and potentially dangerous code practices.
While there is overlap with FindBugs, using
both is not considered redundant.

Data Analysis and Evaluation
Once the vulnerability data has been col-
lected from both security testing and code

analysis, it has to be analyzed and evaluat-
ed. The goal of this step is to decide if the
findings are truly a problem and what to
do about it. This step includes determining
the priority and severity of the security
issues and putting them into an issue track-
ing system. In order for application securi-
ty practices to positively affect the project,
issues uncovered in testing and analysis
need to be tracked and fixed. By integrat-
ing security practices into CI, security
issues are discovered and dealt with more
quickly, in turn preventing many security
risks from entering production and mini-
mizing the possibility of exploitation.

Building application security practices
into a project can be done with minimum
impact to a project’s budget, schedule, and
resources. Integrating security testing and
secure code analysis into CI is the first
step to building security into software.
These practices help build security aware-
ness by showing developers how and why
their code is vulnerable. They give testers
the tools needed to find many security vul-
nerabilities, and project managers a way to
demonstrate the results of security prac-
tices. While it would be instructive to pro-
vide quantitative analysis of the benefits
of integration CI and security, the practice
is still new enough that no major studies
have been conducted.

Application security practices are hard
for many teams to adopt because they
don’t have the time, budget, or resources
needed. CI can help change the econom-
ics of security testing and analysis by giv-
ing project teams tools that can be
deployed in their environment. These
solutions can enable a team to quickly go
from not considering security to a solid
initial step in finding and proactively fixing
security vulnerabilities.u

References
1. Duvall, Paul, and Steve Matyas. Contin-

uous Integration: Improving Software Quality
and Reducing Risk. New York: Addison-
Wesley, 2007.

2. Microsoft. “Team Foundation Server
Home.” Team Foundation Server Home.
2009 <http://msdn.microsoft.com/
en-us/teamsystem/dd408382.aspx>.

3. Coveros. Coveros: Research & Insights –
Free Secure CI Download. Fairfax, VA:
Coveros, 2009.

4. InfoEther. “PMD” SourceForge.net.
2009 <http://pmd.sourceforge.net>.

5. The University of Maryland. “Find-
Bugs – Find Bugs in Java Programs.”
SourceForge.net. 21 Aug. 2009 <http://
findbugs.sourceforge.net>.

6. The Apache Ant Project. “Apache Ant
– Welcome.” Apache Ant. 15 Oct. 2009

Application security is a priority for DoD applications, given the always on, global
nature of the DoD mission. At the same time, it is important to make application
security work within the development practices in common use among DoD devel-
opment teams. By integrating application security practices with CI, we can address
both the security needs of the applications as well as the efficiency and cost-effective
requirements of the development teams.

Software Defense Application

Building Security In Using Continuous Integration

March/April 2010 www.stsc.hill.af.mil 27

About the Authors

Thomas Stiehm has
been developing applica-
tions and managing the
software development
teams for 16 years. As
Chief Technical Officer

of Coveros, he is responsible for the
oversight of all technical projects and
integrating application security practices
into software development projects.

Coveros
4000 Legato RD
STE 1100
Fairfax,VA 22033
Phone: (703) 599-6243
E-mail: tom.stiehm@coveros.com

Gene Gotimer has been
building Web applications
and working with security
for the last 13 years. He
specializes in CI and
Agile Java development.

Coveros
4000 Legato RD
STE 1100
Fairfax,VA 22033
Phone: (703) 963-1620
E-mail: gene.gotimer

@coveros.com

Get Your Free Subscription

Fill out and send us this form.

517 SMXS/MXDEA

6022 Fir Ave

Bldg 1238

Hill AFB, UT 84056-5820

Fax: (801) 777-8069 DSN: 777-8069

Phone: (801) 775-5555 DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:__

RANK/GRADE:___

POSITION/TITLE:__

ORGANIZATION:___

ADDRESS:__

__

BASE/CITY:__

STATE:___________________________ZIP:___________________________________

PHONE:(_____)___

ELECTRONIC COPY ONLY? YES NO

E-MAIL:__

CHECK BOX(ES) TO REQUEST BACK ISSUES:

MAY2008 o LEAN PRINCIPLES

SEPT2008 o APPLICATION SECURITY

OCT2008 o FAULT-TOLERANT SYSTEMS

NOV2008 o INTEROPERABILITY

DEC2008 o DATA AND DATA MGMT.

JAN2009 o ENG. FOR PRODUCTION

FEB2009 o SWAND SYS INTEGRATION

MAR/APR09 o REIN. GOOD PRACTICES

MAY/JUNE09 o RAPID & RELIABLE DEV.

JULY/AUG09o PROCESS REPLICATION

NOV/DEC09 o 21STCENTURYDEFENSE

JAN/FEB09 o CMMI: PROCESS

To request back issues on topics not
listed above, please contact <stsc.
customerservice@hill.af.mil> .

<http://ant.apache.org>.
7. Sun Microsystems. “Hudson CI”.

Hudson: Extensible continuous integration
server. 2009 <http://hudson-ci.org>.

8. Google. “Ratproxy: passive web appli-
cation security assessment tool.”
Ratproxy – Project Hosting on Google
Code. 2009 <http://code.google.com
/p/ratproxy>.

9. IBM. “Help ensure Web site security
and compliance.” IBM Web Site Security
and Compliance – Rational. 2009 <http:
//www-01.ibm.com/software/ration
al/offerings/websecurity>.

10. Fortify Software, Inc. “Source Code
Analyzer (SCA) in Development.”
2009 <www.fortify.com/products/
detect/in_development.jsp>.

