
1 © Copyright 2009 Coveros, Inc.. All rights reserved.

Building Secure Applications

Thomas Stiehm, CTO
tom.stiehm@coveros.com

2 © Copyright 2009 Coveros, Inc.. All rights reserved.

 Coveros helps organizations accelerate the delivery of
secure, reliable software

About Coveros

3 © Copyright 2009 Coveros, Inc.. All rights reserved.

Why Application Security is Important

4 © Copyright 2009 Coveros, Inc.. All rights reserved.

The State of Application Security

 We are really good at finding bugs

 We are not so great at finding flaws

 We sometimes fix the problems we find

 We mostly never build security in

5 © Copyright 2009 Coveros, Inc.. All rights reserved.

Finding Bugs

 Common Implementation Errors
– Buffer overflow
– Race conditions
– TOCTOU (time of check to time of use)
– Unsafe environment variables
– Unsafe system calls
– Untrusted input problems

6 © Copyright 2009 Coveros, Inc.. All rights reserved.

Finding Flaws

 Flaws (Design Defects)
– Misuse of cryptography
– Compartmentalization

problems in design
– Privileged block protection

failure
– Type safety confusion error
– Insecure auditing
– Broken or illogical access

control
– Method over-riding

problems

7 © Copyright 2009 Coveros, Inc.. All rights reserved.

Fixing the Problem – One DoD Initiative

0.00

20.00

40.00

60.00

App1 App2 App3 App4 App5 App6

Critical/High Vulnerabilities Per 1,000 Lines of Code

Initial
Follow-On

But there are 1,000’s of apps … do the math

8 © Copyright 2009 Coveros, Inc.. All rights reserved.

Why you can’t just test security into your apps

 Most Quality Assurance (QA) professionals are not
application security specialist – most have no security
testing training or experience

 Those organizations that do security testing tend to have an
overreliance on automated security testing software

 Automated tools are not good at finding flaws
 New security defects are discovered every day and it takes

time to get those programmed into tools
 Reliance on automated security testing tools without a

grounding in security testing can lead to a false sense of
security

9 © Copyright 2009 Coveros, Inc.. All rights reserved.

Why building security into an application is hard

 Applications are complex and suites of applications that
support a business are extremely complex

 The technology stacks used to implement modern
application are enormous, deep and wide, working across
several tiers including the client, middleware and data tiers

 Wide use of multiple application development frameworks,
libraries and components

 Application security defects can be in any tier or spread
across multiple tiers based on sophisticated interacts
between the tiers

 Most application developers are not and will never be
security aware much less security experts

10 © Copyright 2009 Coveros, Inc.. All rights reserved.

Files

Client/Server Application

Libraries

Embedded Interpreter (rare)

Network API (rare)

Desktop Application Complexity - 80s Apps

Operating System

Application Code

11 © Copyright 2009 Coveros, Inc.. All rights reserved.

Server
Database

Client/Server Application

Server Application Env.

Application Code (if any)

Server Presentation

Client
Client Application Env.

Client Library

Application Code (if any)

Client/Server Complexity - 90s Apps

12 © Copyright 2009 Coveros, Inc.. All rights reserved.

Client Presentation
Client OS

Presentation Tier Business Logic and Data

Client Browser – HTML/CSS

JavaScript – AJAX, jQuery

Server Presentation

Server Presentation
Static Content

Dynamic Content

Web or App Server,
Components, Frameworks

Business Logic

Data
Server OS

Server OS

RDBMS

NoSQL Server

App Server – JEE, .NET

Libraries, Components, App
Containers, Frameworks

Layers of Complexity – 2000s Web Apps

13 © Copyright 2009 Coveros, Inc.. All rights reserved.

Why is it hard to create Application Security
Requirements?

 Most business users aren’t security experts and will not
actively consider security features on their own

 Security is often implicitly “assumed” into the requirements
 Even if a business user asks about application security they

lack the expertise to specify what their needs are
 Application security is never a problem, until it is a problem

and then it is an instant crisis
 Most software developers lack the ability to translate

security vulnerabilities into business risk making prioritizing
application security hard to do as compared to functional
requirements

 Industry standards can help make the case for application
security (think PCI, HIPAA and Basel II)

14 © Copyright 2009 Coveros, Inc.. All rights reserved.

How do you build security into Applications?

 Adopt and use an application security process from the
beginning of the project

 Application Security requirements should be created along
with the functional application requirements and
implemented with the code features of the software

 Lead the security requirements process, sell the value of
good security practices to the business

 Create security standards and practices and put security
controls into your base software architecture

 Monitor compliance with your security standards
 Adopt the use of security tools such as static code analysis

and web scanners
 Get in the practice of conducting manual security

verification like code reviews and penetration testing

15 © Copyright 2009 Coveros, Inc.. All rights reserved.

Agile and Security

 There is a widely held belief that secure applications cannot
be developed using agile practices.

 This belief comes from:
– Misunderstanding agile (aka myths about agile)
– Misunderstanding application security
– An excuse not to change

 We have successfully built many, many security-critical
applications using agile

16 © Copyright 2009 Coveros, Inc.. All rights reserved.

SecureAgileTM Development Process

Assures time-to-market while achieving security objectives

17 © Copyright 2009 Coveros, Inc.. All rights reserved.

SecureAgileTM Security Practices

 Misuse/Abuse Cases

 Security Stories

 Defensive Design and Programming

 Continuous Software Security Assurance
– Architectural risk analysis
– Code analysis
– Security and penetration testing

18 © Copyright 2009 Coveros, Inc.. All rights reserved.

Misuse / Abuse Case Development

 Purpose: Define the possible mechanisms an adversary
might exploit to compromise your system

 Approach:
– Misuse cases are extensions to use cases that highlight

ways in which the system might be misused accidentally
– Abuse cases are extensions to use cases that highlight

ways in which the system might be abused on purpose

 Results:
– Insight into potential abuses that can be avoided and

also tested for later

19 © Copyright 2009 Coveros, Inc.. All rights reserved.

Security Stories

 Purpose: Document the non-functional security
requirements associated with the system

 Approach
– “User shall not …” nomenclature

 Purpose
– Assure all explicit security requirements are documented

to aid secure development and testing activities

20 © Copyright 2009 Coveros, Inc.. All rights reserved.

Defensive design and coding

 Incorporation of security controls into software design and
code

– Security frameworks like OWASP ESAPI

 Use of vetted components
– Libraries of secure components

 Build security controls into your application architecture

 Examination of design / code looking for realization of
architectural risks and misuses / abuses

21 © Copyright 2009 Coveros, Inc.. All rights reserved.

Software Assurance

 Architectural risk analysis
– Assess architecture against threat model, attack

patterns, known weaknesses

 Secure code review
– Both automated and manual

 Security testing
– Risk-based testing
– Testing of security functionality

 Penetration testing
– Performed during the release process

22 © Copyright 2009 Coveros, Inc.. All rights reserved.

Continuous Integration

 Automation of build, test, deploy process
– Check-in builds / tests
– Nightly code integrations and regression tests
– Automated promotion between test stages
– Automated notification of build failures

 A critical capability to have when building software using

agile … and supports security analysis

 Integration of code analysis and automated security testing
can result in identification of security issues early in the
process

23 © Copyright 2009 Coveros, Inc.. All rights reserved.

Engineer

IntelliJ IDEA/
Eclipse

subversion

Jenkins

Create
code

Version
code

Build
application

Test
application

Test
security

Track
progress

24 © Copyright 2009 Coveros, Inc.. All rights reserved.

Real World Example

 Division of a Fortune 500 Bank
 Creating a suite of applications to be used for a new service

offering within the bank
 All applications will use the same core architecture and

infrastructure providing a large number of components for
each individual application to use

 The applications will be accessible over the Internet to
select clients and bank staff

25 © Copyright 2009 Coveros, Inc.. All rights reserved.

How we got involved

 During the development of the suite of applications the bank
commissioned an architectural risk analysis

 The architectural risk analysis focused on the design and
architecture of the core components

 During the architectural risk analysis many deficiencies
where discovered in the design of the application

 As result of the findings a team was created to help the
architecture team build security controls into the core
components of the system

 The bank had already purchased a static analysis tools to
find core level defects. The team decided to extend the use
of the tool to make sure that development used the security
controls

26 © Copyright 2009 Coveros, Inc.. All rights reserved.

Technology Stack

 Java, Java Enterprise Edition (JEE)
 Google Web Toolkit (GWT)
 Spring Framework
 Red Hat Linux
 Sybase
 Oracle
 GigaSpaces

27 © Copyright 2009 Coveros, Inc.. All rights reserved.

Development Environment

 Intellij IDEA
 Windows XP
 Maven 2.0
 Hudson CI server
 GWT Ext

28 © Copyright 2009 Coveros, Inc.. All rights reserved.

Security Components

 OWASP ESAPI
 Hibernate Validator – JSR 303 Reference Implementation
 Spring Security Framework
 Customer Built Security Components

29 © Copyright 2009 Coveros, Inc.. All rights reserved.

Defects Discovered

 Lack of input validation
 No output encoding
 Weak authentication
 Exposed services, no URL or request level access checking
 Lack of logging for an audit trail
 No clickjacking prevention

30 © Copyright 2009 Coveros, Inc.. All rights reserved.

Security Controls Implemented

 Clickjacking prevention
 CSRF prevention
 Input validation
 Output encoding
 Secure logging for audit and intrusion detection

31 © Copyright 2009 Coveros, Inc.. All rights reserved.

WS

M

B

Browser

Web
Services

Mobile

Web
Server

App
Server

Database

Back
Office

Partner
Services

ClickJacking,
CSRF (client)

Input
Validation

Secure
Logging

Output
Encoding

CSRF
(server)

32 © Copyright 2009 Coveros, Inc.. All rights reserved.

Clickjacking prevention

 Clickjacking is where a malicious site contains a hidden
frame around a trusted site

 Since users can’t see the hidden frame an attacker can
make them think they are using a trusted site directly

 The design of the suite of applications allowed a
clickjacking prevention control to be placed at the top level
window or document

 This prevented clickjacking and didn’t allow individual
development teams the ability to turn off the control

33 © Copyright 2009 Coveros, Inc.. All rights reserved.

CSRF prevention

 Cross Site Request Forgery is when an application accepts
an unauthorized request from a user that was fooled into
submitting it.

 The CSRF security control created a hard to guess token
for each user session

 The CSRF security control was integrated into the request
controller so that each request could be evaluated before
any other processing happened

 If the request didn’t have the token it was rejected

34 © Copyright 2009 Coveros, Inc.. All rights reserved.

Input Validation

 Input Validation is the process of checking all input into an
application to make sure it is valid and usable by the
application before it is used

 The Input Validation control that we created for the bank
focused on user input

 It was implemented in the core architecture by sub-classing
and overriding the GWT component that dispatched
requests to an appropriate handler

 By using the Hibernate Validator to annotate all objects
coming from the client side we could quickly determine if the
input data was valid and usable by the application

35 © Copyright 2009 Coveros, Inc.. All rights reserved.

Output Encoding

 Output encoding is the process of formatting data coming
out of an application appropriately for the context that will
consume the output, ex. Escaping SQL to prevent SQL
injection attacks

 The output encoding control we created for the bank
focused on making sure that dynamic SQL statements used
in to the application didn’t contain SQL controls that could
be used for a SQL injection attack

 Where ever possible and practical all dynamic SQL
statements were converted to prepared statements

36 © Copyright 2009 Coveros, Inc.. All rights reserved.

Secure Logging for Audit and Intrusion Detection

 Secure logging is logging to a device that can’t be tampered
with if the server the log originates from is compromised

 The secure logging control we created for the bank was
used for audit and intrusion detection

 The secure logs where written to a log server
 The Intrusion Detection System (IDS) monitored the log

server looking for specific log codes that indicated
anomalous traffic

 If the anomalous traffic surpassed specific thresholds an
alert would be sent to the security team to investigate the
issue

37 © Copyright 2009 Coveros, Inc.. All rights reserved.

GWT Input Validation Example

import com.google.gwt.user.server.rpc.RPCRequest;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;

public class MyAppRemoteServiceServlet extends

RemoteServiceServlet {
protected void onAfterRequestDeserialized(RPCRequest

rpcRequest)
 {
 super.onAfterRequestDeserialized(rpcRequest);
 Object[] params = rpcRequest.getParameters();
 // validate objects in params list
 }
}

38 © Copyright 2009 Coveros, Inc.. All rights reserved.

GWT and Hibernate Validator Example

public class MyAppRemoteServiceServlet extends

RemoteServiceServlet {
protected void onAfterRequestDeserialized(RPCRequest

rpcRequest)
 {
 super.onAfterRequestDeserialized(rpcRequest);
 HashSet<ConstraintViolation<Object>> constraintViolations =

new HashSet<ConstraintViolation<Object>>();
 Object[] params = rpcRequest.getParameters();
 for (Object param : params)
 {
 constraintViolations.addAll(validator.validate(param));
 }
 if (constraintViolations.size()>0) thrown new Exception();
 }

39 © Copyright 2009 Coveros, Inc.. All rights reserved.

Bottom-line

 Adopt and use an application security process
 Perform architectural risk analysis to find flaws, do it early

and refresh it often (at least once per release)
 Write security requirements and test for them
 Perform threat modeling (abuse cases) and write security

stories
 Use static analysis tools to check your code and site, they

will point you to potential problem areas
 Use manual inspection to find defects in problem areas
 Use security testing tools, like web app scanners, to make

sure you don't miss anything obvious

40 © Copyright 2009 Coveros, Inc.. All rights reserved.

Bottom-line

 Use Penetration testing techniques to find non-obvious and
new vulnerabilities, try to break your application

 Build security controls into your architecture, make them
hard to bypass and use tools to check to make sure they
are being used

 Build security controls that fail safe
 Automate your static analysis and security testing tools, run

them often and monitor the results
 Fix Critical and High priority issues immediately

41 © Copyright 2009 Coveros, Inc.. All rights reserved.

Vulnerabilities to what out for

 OWASP Top Ten:
– https://www.owasp.org/index.php/Top_10_2010

 2011 CWE/SANS Top 25 Most Dangerous Software
Errors

– http://cwe.mitre.org/top25/

 There is a lot of overlap as there are major
categories that generate a lot of vulnerabilities
 For Example:

– Injection Attacks and
– Misconfigurations

https://www.owasp.org/index.php/Top_10_2010
http://cwe.mitre.org/top25/

42 © Copyright 2009 Coveros, Inc.. All rights reserved.

OWASP Top Ten 2010

 Injection
 Cross-Site Scripting (XSS)
 Broken Authenitcation and Session Management
 Insecure Direct Object References
 Cross-Site Request Forgery (CSRF)
 Security Misconfiguration
 Insecure Cryptographic Storage
 Failure to Restrict URL Access
 Insufficient Transport Layer Protection
 Invalidated Redirects and Forwards

43 © Copyright 2009 Coveros, Inc.. All rights reserved.

CWE Top 25

 Improper Neutralization of Special Elements used in an
SQL Command ('SQL Injection')

 Improper Neutralization of Special Elements used in an OS
Command ('OS Command Injection')

 Buffer Copy without Checking Size of Input ('Classic Buffer
Overflow')

 Improper Neutralization of Input During Web Page
Generation ('Cross-site Scripting')

 Missing Authentication for Critical Function
 Missing Authorization
 Use of Hard-coded Credentials
 Missing Encryption of Sensitive Data
 Unrestricted Upload of File with Dangerous Type

44 © Copyright 2009 Coveros, Inc.. All rights reserved.

CWE Top 25

 Reliance on Untrusted Inputs in a Security Decision
 Execution with Unnecessary Privileges
 Cross-Site Request Forgery (CSRF)
 [Improper Limitation of a Pathname to a Restricted Directory

('Path Traversal')
 Download of Code Without Integrity Check
 Incorrect Authorization
 Inclusion of Functionality from Untrusted Control Sphere
 Incorrect Permission Assignment for Critical Resource
 Use of Potentially Dangerous Function
 Use of a Broken or Risky Cryptographic Algorithm
 Incorrect Calculation of Buffer Size

45 © Copyright 2009 Coveros, Inc.. All rights reserved.

CWE Top 25

 Improper Restriction of Excessive Authentication Attempts
 URL Redirection to Untrusted Site ('Open Redirect')
 Uncontrolled Format String
 Integer Overflow or Wraparound
 Use of a One-Way Hash without a Salt

46 © Copyright 2009 Coveros, Inc.. All rights reserved.

Thank You

	Building Secure Applications
	Slide Number 2
	Why Application Security is Important
	The State of Application Security
	Finding Bugs
	Finding Flaws
	Fixing the Problem – One DoD Initiative
	Why you can’t just test security into your apps
	Why building security into an application is hard
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Why is it hard to create Application Security Requirements?
	How do you build security into Applications?
	Agile and Security
	SecureAgileTM Development Process
	SecureAgileTM Security Practices
	Misuse / Abuse Case Development
	Security Stories
	Defensive design and coding
	Software Assurance
	Continuous Integration
	Slide Number 23
	Real World Example
	How we got involved
	Technology Stack
	Development Environment
	Security Components
	Defects Discovered
	Security Controls Implemented
	Slide Number 31
	Clickjacking prevention
	CSRF prevention
	Input Validation
	Output Encoding
	Secure Logging for Audit and Intrusion Detection
	GWT Input Validation Example
	GWT and Hibernate Validator Example
	Bottom-line
	Bottom-line
	Vulnerabilities to what out for
	OWASP Top Ten 2010
	CWE Top 25
	CWE Top 25
	CWE Top 25
	Slide Number 46

