
1 © Copyright 2009 Coveros, Inc.. All rights reserved.

Transitioning Your Software
Process To Agile

Jeffery Payne
Chief Executive Officer
Coveros, Inc.
jeff.payne@coveros.com
www.coveros.com

mailto:jeff.payne@coveros.com

2 © Copyright 2009 Coveros, Inc.. All rights reserved.

 Coveros helps organizations accelerate the delivery of secure, reliable
software

 Our services:
– Agile software development
– Application security
– Software quality assurance & test automation
– Software process improvement

 We focus on industries with significant regulation or compliance
requirements

– Financial services & Insurance
– US Defense & Intelligence
– Homeland Security & Critical Infrastructure
– Healthcare & Medical

About Coveros

3 © Copyright 2009 Coveros, Inc.. All rights reserved.

Pop Quiz: Agile Development Means …

 No documentation. We don’t need to write anything down!

 No process. We can do it any way we want!

 No overtime. We can go home at 5!

 No management. We decide when to deliver!

 No testers. Who needs them anyway!

4 © Copyright 2009 Coveros, Inc.. All rights reserved.

What Agile Actually Is

 An approach to software development that recognizes that
building software is much more a design process than a
construction process

– Adaptive over Predictive
– People over Process
– Visibility into the Process!!!!!

 Agile Methodologies

– Extreme Programming
– SCRUM
– Lean Development
– Crystal
– Agile RUP

5 © Copyright 2009 Coveros, Inc.. All rights reserved.

Common Agile Practices

• Management Practices
– Daily standups
– Retrospectives
– Release planning
– Iteration planning
– Requirements envisioning
– Visible progress reporting
– Risk management

• Development Practices
– Iterative development
– Test driven development
– Continuous integration
– User acceptance testing
– Refactoring
– Rapid prototyping
– Pair programming

6 © Copyright 2009 Coveros, Inc.. All rights reserved.

Common Mistakes in
Transitioning to Agile

7 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #1 – Trying to do too much too fast

 Change is HARD for most people

 Adoption of agile methods often fails when organizations try
to radically change too much too quickly

 Best practice:
– Make changes gradually to assure improvement and organizational

buy-in
– Choose first those changes that are 1) easy and 2) foundational
– Pilot changes to demonstrate success

8 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #2 – Hiring the wrong help

 Progress is made in the trenches and is context specific

 Beware of the consultant who:
– hasn’t built a real software product in years
– thinks coaching & classroom training is all it takes

 Recommendations must be practical to gain acceptance
and stick

 Best practices
– Hire a professional consultant who has recent real-world experience

9 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #3 – Trying to Become Agile instead of agile

 Business value is the goal, not becoming Agile

 You don’t need to adopt a particular Agile Methodology to
gain the benefits of agility

 Best Practices
– Start from where you are (Duh!)
– Leverage agile methods that have the largest impact on business

value (correct the largest weaknesses quickly if possible)

10 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #4 – Forgetting About Management Practices

 Technologists often love to focus on development activities
and tools

 Often our biggest problems in software are due to lapses in
communication or project execution

 Best practices
– Move forward with both management and development practices

together for biggest impact

11 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #5 – Forgetting About Testing

 Adaptive processes need feedback to be effective!

 Testing provides valuable feedback on the actual state of
the project not only in terms of quality but schedule & cost
as well

 Early lifecycle testing & test automation can also
substantially accelerate your feedback loop

 Best practices
– Make sure improvements are made in testing right along with

development
– Leverage Continuous Integration to automate your testing process

12 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #6 – Forgetting to Demonstrate ROI Early

 Improvement initiatives often die due to the team’s inability
to demonstrate ROI for $$$ spent to improve

 Make sure you show short-term ROI!

 Best practices
– Capture the value of your improvements in terms of:

 Productivity (aka velocity)
 Quality (decreases in defects and rework)
 Time-to-market (hitting delivery dates)

13 © Copyright 2009 Coveros, Inc.. All rights reserved.

Mistake #7 – Forgetting to Include Users

 A key piece of agile development is early, frequent
feedback from users, customers, stakeholders

 Make sure you include these constituents in the process

 Make sure business analysts are involved as well

 Best practices
– Proxy for busy business executives
– Users involved in user acceptance testing
– Prototyping to make requirements ‘real’

14 © Copyright 2009 Coveros, Inc.. All rights reserved.

High Value
Agile Practices

15 © Copyright 2009 Coveros, Inc.. All rights reserved.

Return on Investment from Agile Methods
Im

pl
em

en
ta

tio
n

Ex
pe

ns
e

In
ex

pe
ns

iv
e

S
om

ew
ha

t
E

xp
en

si
ve

E

xp
en

si
ve

Low Medium High
Value

Test Automation

Daily Standups

Continuous Integration

Pair Programming
Rapid Prototyping Progress Metrics

Incremental Delivery
Retrospectives

Requirements Envisioning

Test Driven Development

Refactoring

Unit Testing

UAT

Release Planning

Iteration Planning

16 © Copyright 2009 Coveros, Inc.. All rights reserved.

Incremental Delivery

 Development of complete, fully tested features in short (2 –
4 week) increments

 Fundamental to supporting any type of agile development
process

– Allows for rapid quality feedback
– Allows for rapid user feedback

 Drives ability to adapt, gain rapid feedback, and provide
ultimate flexibility

17 © Copyright 2009 Coveros, Inc.. All rights reserved.

Daily Standups

 Brief (10 – 15 minute) daily team meetings

 Assures continual communication on the team

 Drives accountability (peer-pressure, visibility)

 Demonstrates day-to-day progress to all team members
and stakeholders

18 © Copyright 2009 Coveros, Inc.. All rights reserved.

Continuous Integration

 Continual build and test of software

 Typically supported by automation and integrated with
source code control, defect tracking, measurement tools

 A building block for test automation

 Drives automation of iterative development & feedback loop

19 © Copyright 2009 Coveros, Inc.. All rights reserved.

Rapid Prototyping

 Development of a high level prototype (often of the user
interface) for user feedback

 A great way to make requirements “visual” for stakeholders
and customers

 Often developed as a throw away but frequently is built
upon anyway (watch this!)

20 © Copyright 2009 Coveros, Inc.. All rights reserved.

Requirements Envisioning

 Upfront requirements analysis that results in a set of related
artifacts for project management

– Release plan – overall plan for product development
– First iteration plan – definition of what features will be built first
– User stories & backlog – Requirements and priorities
– Rapid prototype – Visual example of the system to be developed

 Overall program plan

– Incorporates the above plus staffing, costs, risks

21 © Copyright 2009 Coveros, Inc.. All rights reserved.

Test Driven Development

 Tests developed as part of building code

 Useful for specifying features not fully understood

 Assures unit testing is performed

 Often uses code coverage as a criteria for test
completeness

 Tests often automated and rerun during incremental builds

22 © Copyright 2009 Coveros, Inc.. All rights reserved.

Ways to Get
Started

23 © Copyright 2009 Coveros, Inc.. All rights reserved.

Which Practices to Consider Doing First?

Iterative development Continuous integration

Release & Iteration planning User stories & backlog

Daily standups User acceptance testing

Management Practices Development Practices

Requirements envisioning

Project metrics

Progress dashboard

Unit testing

Use cases

UI wire frames

Retrospectives

Risk management

Compliance

Test Automation

Application Security

Rapid Prototyping

Fi
rs

t
N

ex
t

Th
er

ea
fte

r

24 © Copyright 2009 Coveros, Inc.. All rights reserved.

What development methodology are you following today?

 Waterfall – Straight line development of requirements,
architecture / design, code, tests

– New development
– Supporting legacy systems

 RUP – Rational Unified Process that includes incremental
development, use cases, UML for design, IBM/Rational
tools for dev and test

 Ad-hoc – Cowboy programming

25 © Copyright 2009 Coveros, Inc.. All rights reserved.

Moving from Waterfall

 Waterfall is not incremental. Must tackle move to increment
development approach or agile is not possible

 Begin with a requirements envision to prioritize
requirements and begin doing ‘mini waterfalls’ in 3 month
increments

– Reduce to 1 month increments over time & add automation

 Legacy development you don’t control
– Focus on leveraging agile management instead of trying to convince

the dev team to change
– Use management techniques to gradually shift them to automation

& better testing

26 © Copyright 2009 Coveros, Inc.. All rights reserved.

Moving from RUP

 IBM is putting a significant amount of resources and though
leadership around Agile RUP.

 Agile RUP is a lightweight RUP process that more closely
aligns with the agile philosophy

 Suggest anyone doing RUP start by moving toward agile
RUP

27 © Copyright 2009 Coveros, Inc.. All rights reserved.

Moving from Ad-hoc

 Use continuous integration to begin adding structure and
feedback to a chaotic process

 Begin with simple hurdles for checking in code (code must
build) but collect information on testing that is performed

 Slowly ‘raise the bar’ around regression testing and unit
testing to not allow code to be check in unless it is tested
and then that the tests all pass

 Make build failures visible to the entire team

28 © Copyright 2009 Coveros, Inc.. All rights reserved.

Questions?

Thank You

	Transitioning Your Software �Process To Agile
	Slide Number 2
	Pop Quiz: Agile Development Means …
	What Agile Actually Is	
	Common Agile Practices
	Common Mistakes in Transitioning to Agile
	Mistake #1 – Trying to do too much too fast
	Mistake #2 – Hiring the wrong help
	Mistake #3 – Trying to Become Agile instead of agile
	Mistake #4 – Forgetting About Management Practices
	Mistake #5 – Forgetting About Testing
	Mistake #6 – Forgetting to Demonstrate ROI Early
	Mistake #7 – Forgetting to Include Users
	High Value �Agile Practices
	Return on Investment from Agile Methods
	Incremental Delivery
	Daily Standups
	Continuous Integration
	Rapid Prototyping
	Requirements Envisioning
	Test Driven Development
	Ways to Get Started
	Which Practices to Consider Doing First?
	What development methodology are you following today?
	Moving from Waterfall
	Moving from RUP
	Moving from Ad-hoc
	Slide Number 28

